Sequential Mcmc for Bayesian Model Selection

نویسندگان

  • Christophe Andrieu
  • Nando De Freitas
  • Arnaud Doucet
چکیده

In this paper, we address the problem of sequential Bayesian model selection. This problem does not usually admit any closed-form analytical solution. We propose here an original sequential simulation-based method to solve the associated Bayesian computational problems. This method combines sequential importance sampling, a resampling procedure and reversible jump MCMC moves. We describe a generic algorithm and then apply it to the problem of sequential Bayesian model order estimation of autoregressive (AR) time series observed in additive noise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Model Selection of Regular Vine Copulas

Regular vine copulas are a novel and very flexible class of dependence models. This paper presents a reversible jump MCMC strategy for Bayesian model selection and inference of regular vine copulas, which can select all levels of a regular vine copula simultaneously. This is a substantial improvement over existing frequentist and Bayesian strategies, which can only select in a sequential, level...

متن کامل

Bayesian Variable Selection via Particle Stochastic Search.

We focus on Bayesian variable selection in regression models. One challenge is to search the huge model space adequately, while identifying high posterior probability regions. In the past decades, the main focus has been on the use of Markov chain Monte Carlo (MCMC) algorithms for these purposes. In this article, we propose a new computational approach based on sequential Monte Carlo (SMC), whi...

متن کامل

Spatial Design for Knot Selection in Knot-Based Low-Rank Models

‎Analysis of large geostatistical data sets‎, ‎usually‎, ‎entail the expensive matrix computations‎. ‎This problem creates challenges in implementing statistical inferences of traditional Bayesian models‎. ‎In addition,researchers often face with multiple spatial data sets with complex spatial dependence structures that their analysis is difficult‎. ‎This is a problem for MCMC sampling algorith...

متن کامل

Likelihood-free estimation of model evidence

Statistical methods of inference typically require the likelihood function to be computable in a reasonable amount of time. The class of “likelihood-free” methods termed Approximate Bayesian Computation (ABC) is able to eliminate this requirement, replacing the evaluation of the likelihood with simulation from it. Likelihood-free methods have gained in efficiency and popularity in the past few ...

متن کامل

Generalised linear mixed model analysis via sequential Monte Carlo sampling

We present a sequential Monte Carlo sampler algorithm for the Bayesian analysis of generalised linear mixed models (GLMMs). These models support a variety of interesting regression-type analyses, but performing inference is often extremely difficult, even when using the Bayesian approach combined with Markov chain Monte Carlo (MCMC). The Sequential Monte Carlo sampler (SMC) is a new and general...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999